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R E S E A R C H R E P O R T

Unidimensional Vertical Scaling in Multidimensional Space

James E. Carlson

Educational Testing Service, Princeton, NJ

In this paper, I consider a set of test items that are located in a multidimensional space, SM, but are located along a curved line in
SM and can be scaled unidimensionally. Furthermore, I am demonstrating a case in which the test items are administered across 6
levels, such as occurs in K–12 assessment across 6 grade levels, and for which a unidimensional vertical scale can be developed. I am
limiting my coverage to dichotomously scored items because the models are much simpler than those for polytomously scored items.
However, the concepts discussed can be extended to the latter type of item. I also limit my demonstrations to a 2-dimensional space,
S2, so I can geometrically represent my points in a 2-dimensional representation in this article. These concepts can also be extended to
a higher-dimensional case.

Keywords Assessment; dimensionality; item response theory; linking; vertical scaling
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I start by discussing the concepts and models that are used to represent items that are measuring proficiency in an M-
dimensional proficiency space (SM). I then introduce the fact that it is theoretically possible for a set of items to be tightly
located along a nonlinear curve in SM and that such a curve is mathematically unidimensional. Hence, such a set of items is
measuring a unidimensional proficiency variable and can be modeled with a unidimensional item response theory (IRT)
model. I then show that this is feasible using an artificial dataset generated to represent six levels of test takers using a
two-dimensional case. The first demonstration includes calibrating each level independently followed by linking them as
usually done in vertical scaling. Later I expand the analysis demonstration by showing results for two different concurrent
calibration procedures. The procedures I am demonstrating are easily generalized to a case of higher dimensionality, and I
discuss how this is possible. The main motivation for these demonstrations is the assumption, often stated by testing pro-
fessionals, that a one-dimensional model cannot adequately represent the results of testing in the same educational subject
area across a span of multiple grades. Patz and Yao (2007), for example, stated, “When calibrating items from multiple
test forms for the purpose of measuring students across a range of grade levels, the IRT assumption of unidimensionality
would appear implausible” (p. 260). Briggs and Weeks (2009) stated, “[I]f the dimensional structure changes from test to
test over time … the scores along a unidimensional vertical scale will be biased in the sense that they are not measuring
the multidimensional construct of interest, but some sort of composite factor” (p. 12). Kolen and Brennan (2014) stated,
“One of the most challenging aspects of applying IRT to vertical scaling is the assumption that the same unidimensional
ability is assessed across grades” (p. 469) and concluded, “[m]ore research on psychometric structure across grades and
on the use of multidimensional IRT in vertical scaling is needed” (p. 469). The demonstration in this paper addresses this
last issue somewhat, although not necessarily definitively.

Conceptual Background

Using a Euclidean space, items that are measuring multiple dimensions can, theoretically, be located using location param-
eters in a multidimensional coordinate space, SM. Reckase (1989) pointed out the following:

In principle, test items can be developed to distinguish between persons on each one of the coordinate system
dimensions, or combinations of the dimensions. However, a particular test may not contain items that are sensitive
to differences on all of the dimensions, or examinees may not differ across all tested dimensions. Therefore, the
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dimensionality of the data generated by the administration of a test to the population of interest may not have the
same dimensionality as the full θ-space. (p. 3)

Reckase went on to state that a single item provides measurement in a single dimension (direction) in the space, and
the interaction of test takers with the item provides item response data that divide the space into two parts: one with
test takers primarily having correct scores and one with those primarily having incorrect scores. That single dimension
will typically be some linear combination of the underlying dimensions represented by any set of axes in the coordinate
space, and the direction of that dimension in the space represents “the direction of greatest rate of change from incorrect
responses to correct responses” (p. 5). This direction is referred to here as the direction of measurement (DOM). With
respect to a set of items on a test, Reckase (1989) pointed out the following:

If the direction of maximum rate of change at each point in the space differs across items … the dimensionality
of the data generated by the interaction of the population and the test is equal to the dimensionality of the space
needed to contain all of the directions specified. (p. 6)

One of the purposes of this paper is to demonstrate a case in which this statement is not true. Reckase (1989) does
not consider in his publications (e.g., Reckase 1985, 1989; Reckase & McKinley, 1983, 1991) that a set of test items can,
theoretically, be located along a curved line (which is mathematically unidimensional) in an M-dimensional space, and
a population of test takers can, also theoretically, be located near that same curved line, and hence those items can be
measuring those test takers on a unidimensional proficiency variable. Although Carlson (2001) has demonstrated this
fact with several examples in a one-population situation, in this paper more details and the demonstration that such a
situation can occur across multiple levels of tests and populations of test takers (e.g., grade levels in school) are provided.

Item Response Theory Models

I first review unidimensional item response theory (UIRT) models and parameterizations of them, then show the general-
ization to multidimensional (MIRT) models. Although most readers are probably very familiar with UIRT (and probably
also MIRT) models, the reason for this review is to relate the unidimensional concepts to the multidimensional, with sim-
ilar terminology, notation, and parameterizations, to set up the main topic of curved unidimensional proficiency scales
in a multidimensional space.

Unidimensional Item Response Theory Models

There are many equivalent ways in which UIRT models have been expressed and parameterized. The commonly used
three-parameter logistic (3PL) model may be expressed as

Pij = P
(

xij = 1|ai, bi, ci, θj

)
= ci +

(
1 − ci

) efij

1 + efii
= ci +

(
1 − ci

) (
e−fij + 1

)−1
. (1)

fij = ai

(
θj − bi

)
. (2)

In Expressions 1 and 2, Pij represents the probability of a correct response (xij = 1) on item i, at θj, a value in the
proficiency dimension that varies over the entire space (in the unidimensional case a line theoretically varying from
negative infinity to positive infinity); ai is the item slope (discrimination) parameter; bi the location (difficulty) parameter;
ci the lower asymptote (pseudo guessing) parameter.

A constant multiplier, D= 1.7, with the sole function of making the 3PL as close as possible to the similar normal
(Gaussian) model (see, e.g., Birnbaum, 1968, p. 399) is often added to the right side of the exponent. This constant has no
effect other than changing the metric of the parameters and their estimates, so to simplify, I am not including it here. The
logistic is typically preferred to the normal model because of its mathematical simplicity (Birnbaum, 1968, p. 400). The
exponent in Expression 2 is sometimes parameterized in the slope-intercept form as

fij = aiθj + di, (3)
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Figure 1 Item characteristic curves for two 3PL items showing inflection points.

where, comparing Expressions 2 and 3, clearly
di = −aibi. (4)

For completeness of coverage, I note that bi and θj are both values of the proficiency metric that is being assessed by
the item. Different ways of expressing and parameterizing Expression 1 are used in different publications. Simpler UIRT
models include the two-parameter logistic (2PL) model in which all items are assumed to have a lower asymptote of zero,
yielding (from Expression 1)

Pij = P
(

xij = 1|ai, bi, θj

)
=
(

e−fij + 1
)−1

. (5)

and one-parameter logistic (1PL, Rasch) models in which all items are assumed to have the same a parameter, which can
be set to 1.0 without loss of generality (Birnbaum, 1968, p. 402), so that Expressions 1 and 2 can be written as

Pij = P
(

xij = 1|bi, θj

)
=
(

e−fij + 1
)−1

fij = θj − bi. (6)

Figure 1 displays two 3PL item response curves (IRCs, also called item characteristic curves) having different parameters,
as shown in the figure. The IRC shows how the probability of a correct response (vertical axis) increases with the value
of the proficiency variable, θ (horizontal axis). The IRCs of 3PL items have an inflection point at a θ value equal to the
b-parameter value with a probability value halfway between the lower and upper asymptotes,

Pij =
(

1 + ci
)
∕2. (7)

For the 2PL and 1PL models, the c parameter is set to zero, so the lower asymptote is at zero and the inflection point,
still at θ= b, has a probability value of .5; note that this value of b at the inflection point is still equal to (1+ c)/2 because
this expression is equal to one half with c= 0.

Although most writers refer to the j subscript as a test-taker subscript, this is really not necessary. The θj simply vary
over the entire range of θ values (theoretically from negative infinity to positive infinity) so that Expression 1 is best
thought of as the expression for the probability value at any specific value, θj, on the horizontal axis, which can be that of
many (or no) test takers.

ETS Research Report No. RR-17-29. © 2017 Educational Testing Service 3
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Figure 2 Two-dimensional M3PL IRS with parameters shown and inflection line at P = .575.

Multidimensional Item Response Theory Models

As in the case of the UIRT models, MIRT models are expressed by different authors in a number of different ways. One
common way is the generalization of Expression 1 to the multidimensional 3PL model (M3PL) in a space, SM, with M
dimensions. The model is

Pij = P
(

xij = 1|ai, di, ci, 𝛉j

)
= ci +

(
1 − ci

) efij

1 + efij
= ci +

(
1 − ci

) (
e−fij + 1

)−1
. (8)

fij = a′i𝛉j + di =
M∑

m=1
aimθjm + di, (9)

where ai is a vector of M slope (discrimination) parameters, one related to each dimension; di is a location parameter; ci is
the lower asymptote of the item response surface (IRS), similar to that of UIRT models; and 𝛉j is a vector of M proficiency
values, with elements, θjm, each a value on one of the M proficiency variables. Geometrically 𝛉j contains the coordinates
of a point in SM.

Figure 1 displays the IRS for a two-dimensional M3PL item with parameters shown. Also shown is the line of inflection
across the surface at P = .575 (the line between the orange and blue shaded areas). This line shows the set of points having
probability of correct response exactly halfway between the lower and upper asymptotes of c= .15 and 1.0, respectively.
Therefore, the probability values along the line are

Pij =
(

1 + ci
)
∕2 = .575 , (10)

a generalization of Expression 7. The subscript j in Expression 10 can be thought of as identifying the set of all possible
points along a line representing an orthogonal (perpendicular) projection from the inflection line onto SM. Because the
figure displays a two-dimensional case, of course M = 2.

As mentioned previously for the 3PL, the j subscript in Expressions 8 and 9 does not necessarily have to indicate a
specific test taker. Given the M-dimensional θ space (SM), we can think of 𝛉j as the jth of the infinite number of unique
vectors that can occur in SM. In the two-dimensional case illustrated in Figure 2, this is S2, the “floor” of the figure with axes
θ1 and θ2, both theoretically ranging from minus to plus infinity. Different test takers may have the same values on the M
θ variables and hence the same vector. Different vectors may have different values of the probability of a correct response,
the perpendicular distance between SM and the IRS (above the “floor” in S2), but, as can be seen by examination of the
IRS in Figure 2, there are lines of constant probability so any vector representing a point with an orthogonal projection
from such a line has the same probability value.

And each 𝛉j vector does not necessarily have any test takers with its specific elements. Hence the IRS is perhaps best
thought of as the locus of probabilities, as computed from the model parameters, of correct responses at the locations

4 ETS Research Report No. RR-17-29. © 2017 Educational Testing Service
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Figure 3 Contour plot of the item response surface in Figure 3.

of all possible unique 𝛉j vectors. In the two-dimensional case illustrated, each such vector has two elements that are the
coordinates of a point in S2 which, as mentioned previously, is the floor in Figure 2. For individual test takers, of course,
given the values in their 𝛉 vectors, we could compute their probabilities of achieving a correct response on the item. And
given sample data from the interaction of N test takers with each item on a test, we can estimate the model parameters
and use them to estimate the test takers’ proficiencies.

Multidimensional Item Difficulty

Reckase (1985) defined MID in terms of the direction in the θ space of the steepest slope of the item’s IRS, referred to here
as the DOM of the item. The DOM is defined as a direction of nondecreasing probabilities because we assume that as θ1
and/or θ2 increase, the probability of a correct response to the item is nondecreasing. Referring to Figure 2, it should be
clear that as we consider moving along different straight lines in S2 (the floor of the figure), the orthogonal distances of
the IRS from S2 (which are the probabilities) may be increasing, remaining steady, or decreasing. The DOM must be in a
direction in which the probability is nondecreasing and the slope of the IRS is a maximum compared to other directions
as we move along the line in S2 defining that direction. Looking at the figure, it should be clear that there are many such
lines parallel to each other. In this paper I denote such a line that passes through the origin (coordinates of θ1 = 0, θ2 = 0)
as the DOM, θ ∗

i . It represents a proficiency variable that is a linear combination of θ1 and θ2, defining the proficiency
measured by item i and its direction. The DOM is perpendicular to the orthogonal projection of the inflection line onto
S2.

The inflection line is so referred to because, if you consider all points along that line, as we move in a positive direction
along the DOM, the slope is increasing before that line is reached and decreasing after it is reached; in Figure 2 that line
has P = .575, as indicated. Orthogonally projecting the lines of constant probability of the IRS in Figure 2 onto the two-
dimensional θ space (S2, the floor in Figure 2) yields the contour plot displayed in Figure 3. In that figure, the orthogonally
projected lines for probabilities of .2, .4, .6, and .8 are shown. Hence the projection of the inflection line is slightly toward
the .4 line from the .6 line.

For the two-dimensional case, the MID is the signed distance between the orthogonal projection of the inflection line
onto S2 and the origin (θ1 = 0, θ2 = 0). In the general case in SM, it is given by

Di =
−di√√√√ M∑
m=1

a2
im

= b ∗
i , (11)

which I denote as b ∗
i because it can be considered a location parameter of item i along the DOM, θ∗. It is the location

parameter analogous to the b parameter in the one-dimensional model, and for the item being used to illustrate, it is
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computed from Expression 11 to have a value of −.373. It is the distance from the origin to the inflection line, positive
if in the first quadrant and negative if in the third. An important aspect of the MIRT models, as mentioned previously,
is that the IRS must be such that the probabilities represented in the IRS are nondecreasing in the positive directions of
all M proficiency dimensions and also in the dimension defined by θ ∗

i , the DOM. In the two-dimensional case in the
illustrations herein, that means that the location defined by the DOM and the Di or b ∗

i parameter must always be in the
first or third quadrant of S2.

Reckase (1985) defined the MID direction in terms of the angles, ωim, between the DOM of item i and each of the M
θ axes. These angles are the elements of the vector 𝛚i, in which ωim, can be determined from

cosωim =
aim√√√√ M∑

m=1
a2

im

, m = 1, … ,M. (12)

Reckase (1985) also provided an expression for the exponent in Expression 9 in terms of polar coordinates in SM as

fij =
M∑

m=1
aimθjm cos

(
ωjm

)
+ di. (13)

I introduce this parameterization here because I use it later in my demonstration of curvilinear unidimensional profi-
ciency. I should point out that Reckase typically discussed the M2PL model (c parameter set to 0.0) rather than the M3PL,
although he did mention that model briefly (Reckase, 1989).

Multidimensional Item Discrimination

Reckase and McKinley (1983, 1991) discussed discrimination in M2PL models and the slope of the IRS in the measure-
ment direction at the inflection line; the slope was derived by Reckase (1985) as

Slope = 1
4

M∑
m=1

aim cosωim = 1
4

M∑
m=1

⎛⎜⎜⎜⎜⎜⎜⎝
aim

aim√√√√ M∑
m=1

a2
im

⎞⎟⎟⎟⎟⎟⎟⎠
= 1

4

√√√√ M∑
m=1

a2
im. (14)

For the M3PL, the slope formula has a multiplicative factor of (1−ci). For the unidimensional 2PL model, Expression 14
reduces to the slope at the point of inflection being equal to (1/4)ai, as would be expected. For the 3PL, it is (1/4)ai(1−ci).
The multidimensional item discrimination (MDISC) was defined (Reckase, 1986, 1989) as

MDISCi =

√√√√ M∑
m=1

a2
im = a ∗

i , (15)

which I denote as a ∗
i because it represents a slope (discrimination) parameter for the proficiency variable, θ ∗

i measured
by the item and is analogous to the a parameter in the unidimensional model. For the illustrative item, it is computed
from Expression 15 to have a value of 1.342. Note also, from Expressions 11 and 15,

b ∗
i =

−di

a ∗
i

, (16)

which I use later in developing the concept of the curvilinear unidimensional proficiency in a multidimensional space.

Relation of Parameters to the Proficiency Space

I will use an alternative definition of location parameters in place of the Reckase D (my b∗), which is a point in SM defined
by distance in the measurement direction (defined by 𝛚i). I define location as the rectangular coordinates of that point in
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Figure 4 Two-dimensional proficiency space showing geometric interpretation of parameters for the item response surface in Figure 3.

SM. The coordinate along dimension m is given by Reckase (1985) as

θim = Di cosωim = b ∗
i cosωim =

−diaim
M∑

m=1
a2

im

= bim, (17)

where, again, I denote these coordinates as bim because they represent location parameters with respect to the M dimen-
sions of the proficiency space. It is important to note that for any item characterized by the MIRT model, these b parameters
must all have the same sign. The reason is that, as discussed above, the IRS must be nondecreasing in the proficiency vari-
ables, and for this to be true the bs must be in the first or third quadrants, so must have the same sign. This restriction
is discussed further below in conjunction with discussion of characteristics of the proficiency space. Note also, from
Expressions 15, 16, and 17,

bim =
−diaim(

a ∗
i

)2 =
b ∗

i aim

a ∗
i

, (18)

which I use later in my development of the curvilinear unidimensional proficiency concept. As stated previously, the
location of an item can be described in terms of the relationship of the parameters of an item to lines and points in the
proficiency space, SM. I limit this discussion to the two-dimensional space because in S2 the proficiency space is a plane
that is easily represented in a figure. Figure 4 is used to illustrate. In what follows, I omit the item subscript, i, because I
am only dealing with one item, as shown in the figures.

As shown, θ1 is the horizontal axis and θ2 the vertical axis. The figure illustrates the following:

1. The line θ∗, which is in the proficiency measured by the item and is in the DOM in the proficiency space.
2. The orthogonal projection of the inflection line onto the space.
3. The location parameters b1 and b2 as distances along θ1 and θ2, respectively (as computed from Expression 18).
4. The b∗ as the signed distance from the origin to the projected inflection line along θ∗ (computed from

Expression 16).

Note that for this item, b∗ is negative because it is in the negative direction (along the DOM) from the origin of S2.
Using trigonometry or Pythagoras’s theorem, it is easily shown that

b∗ = sign
(

b1
)√

b2
1 + b2

2 = sign
(

b2
)√

b2
1 + b2

2. (19)
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A plane orthogonal to S2 located along the θ1 axis cuts the IRS in Figure 3 in a curve that is a 3PL response curve with
parameters a1, b1, and c; similarly, a plane orthogonal to S2 along the θ2 axis cuts the IRS in a 3PL response curve with
parameters a2, b2, and c. The DOM is given by the angles defined in Expression 12. For the two-dimensional item in the
figures, the measures of the angles between the DOM and the two axes are

ω1 = arccos
(

a1∕a∗
)
= arccos (1.2∕1.342) = 26.565∘, (20)

and
ω2 = arccos

(
a2∕a∗

)
= arccos (.6∕1.342) = 63.435∘. (21)

Clearly in the two-dimensional case, because the axes are orthogonal, the measures of these two angles must sum to
90∘, and they do. Using trigonometry, one can see from the figure that

b1 = b∗ cosω1,

b2 = b∗ sinω1. (22)

It is also true that the plane orthogonal to S2 along the θ∗ DOM line cuts the IRS in a 3PL IRC. The parameters of
this curve are a∗, b∗, and c. In other words, the DOM of a single item characterized by an M3PL model always defines a
unidimensional 3PL response curve when projected orthogonally onto the multidimensional IRS.

Returning to the fact that the b parameters of any item characterized by the MIRT model must have the same sign,
consider Figures 2 and 4. Remembering that Figure 4 is the floor of Figure 2, in the two-dimensional case it can be seen, for
example, that if b1 is positive and b2 is negative, the probability (height of the IRS) will decrease as θ2 increases, a violation
of the nondecreasing assumption. The same will be true if the signs of these two parameters are reversed. Although it
cannot be displayed in a three-dimensional figure such as Figure 2, this same restriction applies to the M-dimensional
case. From Expression 18, because the a parameters are always positive, it can be seen that the b parameters will always
have the same sign, that of b∗.

Curvilinear Unidimensional Proficiency

As the beginning of my illustration of curvilinear unidimensionality, consider a curved line in two-dimensional Euclidean
space, S2. Points along such a curve are not free to vary in any direction; they are restricted to being on that curved
line. Mathematically, such curves represent unidimensional variables in a plane. For the types of curves considered
in this work, with axes θ1 and θ2, each unique point along θ1 is associated with a unique point along θ2 and vice
versa.

In this way, a set of items may be such that their location parameters lie on a curve in S2, and that curve defines a
unidimensional (curvilinear) subspace of S2. In general, the same principle can apply to a higher-dimensional space; item
location parameters can lie along a unidimensional curve that runs through S3 or a higher multidimensional space, SM.

Demonstration Simulation Study

To illustrate this fact in the two-dimensional case, I have defined a hypothetical set of items with parameters displayed in
the Appendix.

The first step in locating the items was to specify ω1, b∗, and a∗ for each item, such that the items were located on
the curve in S2 shown in Figure 5. Note that this specification involves using the polar coordinate representation of the
exponent in the model; ω1 represents the direction and b∗ the distance of the polar coordinates. These parameters are
displayed in the appendix as Givens. The a∗ parameters were arbitrarily selected because the purpose of this simulation
is only to demonstrate my main theme. The c parameters were all set to .2 for the same reason. To show all parameters
discussed previously, b1, b2, d, a1, and a2 are also displayed in the Appendix and they were computed from the equations
discussed previously, as follows: Expressions 11 and 15

d = −b∗a∗, (23)

8 ETS Research Report No. RR-17-29. © 2017 Educational Testing Service
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Figure 5 Locations of items in S2 by levels administered.

Table 1 Design for Simulation: Items by Levels

Linking items

Test-taker level Total items On-level items Levs 1 & 2 Levs 2 & 3 Levs 3 & 4 Levs 4 & 5 Levs 5 & 6

Lev1 40 30 10 Lev2
Lev2 40 20 10 Lev1 10 Lev3
Lev3 40 20 10 Lev2 10 Lev4
Lev4 40 20 10 Lev3 10 Lev5
Lev5 40 20 10 Lev4 10 Lev6
Lev6 40 30 10 Lev5

Expressions 12 and 15

a1 = a∗ cos
(
ω1

)
, and

a2 = a∗ cos
(
ω2

)
= a∗ sin

(
90∘ − ω2

)
= a∗ sin

(
ω1

)
, (24)

Expression 22

b1 = b∗ cos
(
ω1

)
, and

b2 = b∗ sin
(
ω1

)
. (25)

Because the intention is to illustrate how a vertical scale can theoretically be developed across levels such as grades in
school, the simulation design is that of a six-level assessment using a nonequivalent group common-item design such as
that discussed in Carlson (2011, pp. 60–61) and Kolen & Brennan (2014, pp. 431–432). The item design is displayed in
Table 1. For Levels 1 and 6, 30 dichotomously scored on-level items were specified, whereas for Levels 2 through 5, each
level had 20 such items specified. Thus test takers were simulated to respond to 40 items each, and the total number of
items was 140. In order to link test forms across levels, 20 linking items were shared by each pair of adjacent levels.

Two-dimensional proficiencies were simulated for 2,000 test takers at each level with simulated tests configured as
shown in Table 1. All simulations were carried out in Microsoft Excel. The simulated data were scaled using BILOG-MG
(du Toit, 2003) and linked using STUIRT (Kim & Kolen, 2004).

ETS Research Report No. RR-17-29. © 2017 Educational Testing Service 9
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Table 2 Parameters of the Two-Dimensional Proficiencies

Mean SD r

Level θ1 θ2 θ1 θ2

1 −3.228 −1.093 0.496 0.138 0.678
2 −1.528 −0.779 0.496 0.223 0.870
3 −0.265 −0.101 0.507 0.328 0.902
4 0.598 0.801 0.295 0.428 0.928
5 1.100 1.893 0.085 0.383 0.808
6 1.330 3.233 0.069 0.546 0.380

Figure 6 Scatterplot of population proficiencies for the simulation by level.

The thetas specified for the 2,000 simulated test takers at each of the six levels were bivariate normal with means,
standard deviations, and correlations shown in Table 2. An Excel spreadsheet, using random generators provided in that
software, was used to generate initial values on two bivariate normal uncorrelated variables. Two different linear com-
binations of these initial variables were then used to define θ1 and θ2 separately for each level, such that the test takers
were also located along the same curvilinear unidimensional space as the item location parameters. In the case of these
proficiencies, they vary somewhat about the line rather than lying exactly on a line as do the location parameters. These
transformations were carried out by trial and error so as to achieve distributions appropriate for my demonstration. The
final result was the 2,000 simulated test takers at each of the six levels, with the means increasing from Level 1 to Level
6. As may be seen from the standard deviations in Table 2, the lower levels varied more on θ1 than on θ2, whereas the
higher levels varied more on θ2. This variation in the standard deviations allows for representing what I intended, a profi-
ciency dimension that changes with respect to two underlying dimensions as the level increases from Level 1 to Level 6, as
might occur in a cross-grade educational assessment. Those underlying dimensions are designed to represent two differ-
ent subject matter subareas within an overall subject area such as mathematics. A scatterplot of the resulting population
proficiencies showing relationships to the two initial dimensions is shown in Figure 6.

As may be seen in Figure 6, the Level 1 simulated test takers vary primarily along the θ1 dimension, whereas at Level 6
they vary primarily along the θ2 dimension, and as the level increases there is a transition to varying less on θ1 and more
on θ2. As mentioned above, these changes in variation are designed to simulate a gradual transition of a scale that changes
from relying on one subarea of a school subject matter to relying on a different subarea of that same subject as grade level
increases.

10 ETS Research Report No. RR-17-29. © 2017 Educational Testing Service



J. E. Carlson Unidimensional Vertical Scaling in Multidimensional Space

Figure 7 BILOG b-parameter estimates by level.

Demonstration Sample Design

To demonstrate that simulated sample data generated using the item parameters in the appendix and the population
proficiencies displayed in Figure 6 can actually be scaled in a unidimensional vertical scale, Excel was used to generate
the data. Using the item parameters, random dichotomous item response data were generated for the proficiency values
displayed in Figure 6 and items by levels, as displayed in Table 1.

Independent Calibration Analyses

In the first analyses, the item response data for each of the six levels were independently calibrated with a 3PL model
using the BILOG-MG software. Using the resulting item parameter estimates, the STUIRT software was used to link the
resulting scales across the six levels.

Results

Calibration and Item Parameter Estimation Using BILOG-MG

As mentioned previously, the first step in the analyses was to calibrate the simulated item response data independently for
each of the six levels. The BILOG estimates of the b parameters (locations or difficulties) for all 140 items are displayed by
level in Figure 7.

Figure 8 similarly displays the BILOG a-parameter estimates (slopes or discriminations) by level. As usual when cali-
brating item response data, these parameter estimates tend to vary from the parameters more than do the b parameters.

Similarly, Figure 9 shows the BILOG c-parameter estimates (lower asymptotes) by level. Recall that the c parameters
were all specified as .2 in the simulation. As shown in Figure 9, most of these estimates lie between .15 and .35, but there
are a number of outliers. This is not unexpected when estimating c parameters.

Recall that the data were generated using a two-dimensional MIRT model, so the one-dimensional estimates shown
in Figures 7, 8, and 9 are not directly estimating the parameters used to generate the data. However, Figure 10 displays
plots to show the relationships between the unidimensional BILOG b-parameter estimates and the b∗ location parameters,
representing the location along the DOMs used in the simulation. Clearly the BILOG b estimates are highly correlated
with the location parameters used in the simulation. All six of the correlations are between .97 and .99.
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Figure 8 BILOG a-parameter estimates by level.

Figure 9 BILOG c-parameter estimates by level.

Although it is well known that the a parameters are not estimated as well as the b parameters, inexplicably, for two
Levels, 4 and 5, the correlations of the BILOG a estimates with the a∗ parameters are very low, .39 and .17, respectively. For
the other four levels, those correlations range from .74 to .82, which are quite high for estimation of the slope parameters
in IRT.

Proficiency Estimation Using BILOG-MG

The expected a posteriori (EAP) method was used to estimate proficiencies in BILOG-MG. Because the data were generated
from an MIRT model with two proficiency dimensions, θ1 and θ2, whereas the unidimensional BILOG EAP estimation
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Figure 10 b∗ parameters and BILOG b estimates by level.

Figure 11 Means and ranges of expected a posteriori proficiency estimates by level.

only yields one proficiency variable, I did not necessarily expect to see high relationships between the generating and
estimated proficiency variables.

To provide a first look at the results, I show in Figure 11 the mean unscaled EAP scores by level, the means plus and
minus the standard deviations, and the means plus and minus the average estimated standard error of the proficiency
estimates. Also displayed are the maxima and minima of the EAP estimates by level. The means, of course, are all near
zero as a function of the usual metric arbitrarily selected during estimation. As seen in the figure, the Level 5 data are
somewhat anomalous, having a smaller standard deviation and larger average standard error than the other levels.
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Table 3 Summary Statistics of BILOG Expected a Posteriori Estimates by Level

Level Mean SD Empirical reliability r with NCa Skew Kurtosis

1 0.003 0.796 0.581 0.979 −0.039 −0.051
2 0.001 0.823 0.666 0.982 −0.024 0.039
3 0.001 0.852 0.729 0.983 −0.003 0.007
4 0.003 0.831 0.688 0.984 0.024 −0.007
5 0.003 0.737 0.583 0.978 0.034 0.030
6 0.001 0.832 0.606 0.986 −0.036 0.012

Note. NC= number-correct.
aCorrelation with number-correct scores.

Figure 12 BILOG expected a posteriori estimates and generating values of θ1 by level.

Interestingly, a phenomenon of decreasing variability, discussed in detail (with literature citations) by Briggs and Weeks
(2009) and referred to as scale shrinkage, does not occur in my findings. One of the points made by Briggs and Weeks is
that research by Yen in 1985 (cited by Briggs and Weeks, 2009, p. 6) suggested that the scale shrinkage could be related to
violation of the IRT assumption of unidimensionality. So the lack of scale shrinkage in my demonstration may be related
to my main thesis that one can develop a unidimensional scale in a multidimensional space.

Some descriptive statistics of the unscaled BILOG EAP proficiency estimates are displayed in Table 3. Although the
distribution shapes were not constrained during estimation, the distributions are fairly symmetrical, with skewness and
kurtosis indices near zero.

To show the relationships of the EAP estimates to the proficiency variables used in generating the data, Figures 12 and
13 display scatter plots of those relationships by level. As expected, given the configuration of generating proficiencies
(Figure 6), the lower levels have larger variances on θ1 than on θ2, and the higher levels show the reverse of this trend.

Vertical Scaling Using STUIRT: Item Parameter Estimates

The objective of this study was to use multilevel simulated item response data having a configuration of a one-dimensional
curvilinear proficiency variable in a two-dimensional space, which is demonstrably scalable unidimensionally. The
nonequivalent group common-item design, shown in Table 1, was used to carry out the vertical scaling. The plan was
to use the Stocking-Lord (SL; Stocking & Lord, 1983) test characteristic curve (TCC) method to link the parameter
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Figure 13 BILOG expected a posteriori estimates and generating values of θ2 by level.

estimates through the common items simulated to be administered at adjacent levels, using the STUIRT software (Kim
& Kolen, 2004). The order of the linking was to first link Level 4 to Level 3, then Level 5 to 4 and 6 to 5. Similarly, Level 2
was linked to Level 3 and then Level 1 to Level 2.

The STUIRT program yields transformation constants for four methods of linking: mean-mean, mean-sigma, Haebara
TCC, and SL TCC (Kolen & Brennan, 2014). Because these methods are all linear transformations, there are slope (B) and
intercept (A) constants used in the transformations:

bT = A + Bb, (26)

aT = a∕A, (27)

and
θ̂T = A + Bθ̂. (28)

In these expressions, the T superscripts indicate the transformed parameter and proficiency estimates. Hence the θ̂T

values are the estimates for each test taker on the vertically scaled proficiency.
The transformation constants are shown in Table 4.
For all but one of these linking steps, the resulting SL scaling constants were very reasonable and worked well, as were

those of the other TCC method, the Haebara. However, in using the SL method to link Level 6 to Level 5, the results were
larger than reasonable, as were the Haebara method constants (A and B values shaded in Table 4). Following a suggestion
from the first author of the STUIRT program (personal communication from Seonghoon Kim), I tried rerunning the
program using the mean-mean results as starting values for the TCC methods. This technique, however, did not yield
better results (Haebara results unchanged; SL results A= .034, B= 2.050). I therefore decided to use the mean-sigma
transformation constants for the link of Level 6 to Level 5 in the vertical scaling.

Because the objective of vertical scaling is to link the tests across levels in a unidimensional scale, the important results
are how the TCCs, scaled item parameter estimates (primarily the locations, estimates of the bs), and scaled test-taker
proficiency estimates line up. The scaled TCC plots are displayed in Figure 14, the scaled b estimates in Figure 15, and the
scaled proficiency estimates in Figures 16 and 17.

As can be seen in Figure 14, the vertical scale for these data shows an excellent configuration of the unidimensional
scale across the six levels. The TCCs of the levels are ordered as expected and separated as one would expect for a vertical
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Table 4 STUIRT Estimates of Linking Constants

Link

Method Estimate L1 to L2 L2 to L3 L4 to L3 L5 to L4 L6 to L5

Mn-mn A 1.130 0.938 0.826 0.417 0.358
B −6.014 −2.449 2.077 3.462 5.001

Mn-sigma A 0.931 1.070 0.691 0.344 0.430
B −5.734 −2.589 1.962 3.389 5.120

Haebara A 1.030 0.985 0.782 0.509 3.679
B −5.591 −2.513 2.105 3.786 23.067

Stocking-Lord A 1.153 0.973 0.720 0.441 4.994
B −6.014 −2.519 2.027 3.600 28.175

Note: Shaded cells highlight unreasonably high transformation constants.

Figure 14 Vertically scaled test characteristic curves by level.

scale. The one TCC that is somewhat different is that for Level 6, having a steeper slope than the others; recall that the TCC
linking methods did not work well for that level, so I decided to use the mean-sigma transformation for linking Level 6
to Level 5.

As shown in Figure 15, the vertical scaling lined up the location parameters of the items across levels in a very clearly
unidimensional configuration.

In Figure 16, I show the differences between the scaled b-parameter estimates of the linking items on the adjacent
levels. As may be seen, most of those differences are in the range of −0.5 to +0.5, with only nine points out of 100 outside
of this range, including one in the link of Level 2 to Level 1 that is very much an outlier at −1.65.

The next three figures show how the simulated test-taker mean scores lined up in the unidimensional scale. Figure 17
shows how the means lined up across levels and also shows the variation (in terms of standard deviations and range).

Figure 17 shows a very regular pattern of how the vertically scaled mean scores lined up across levels. The previously
mentioned smaller variation at Level 5 is also obvious in this figure; Level 6 also shows a similar smaller spread of scores,
undoubtedly due to that level being linked to Level 5.

Similarly, Figure 18 shows how the quartile points on the scale line up in a configuration that supports the unidimen-
sional scale across levels. Again, the smaller variation at Levels 5 and 6 is clear compared to the other levels.

An interesting comparison of the plots in Figures 18 and 19 is that with Figure 3 of Briggs and Weeks (2009). The
shapes of the curves in my figures are very similar to those of Briggs and Weeks: decreasing slope with level (grade level
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Figure 15 Vertically scaled b-parameter estimates by level.

Figure 16 Differences between linking item b-parameter estimates for adjacent levels.

in the Briggs and Weeks case). These authors pointed out that “the growth in score means from grade to grade appears
somewhat nonlinear, and decelerating over time” (p. 8) and also that “this is consistent with previous findings of Kolen
(2006)” (p. 8).

Figures 19 and 20 show how the BILOG EAP estimates, after being vertically scaled, relate to the generating proficiency
variables, θ1 and θ2. Again the lower levels have more spread in the direction of the first dimension and less spread in the
direction of the second, and the reverse is true of the higher levels, as expected.

These two figures provide further evidence that, as conjectured, a vertical scale following a curvilinear unidimensional
configuration in the context of a multidimensional space can be very accurately recovered with a unidimensional IRT
model analysis of item response data.
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Figure 17 Means and variation of vertically scaled scores, across levels.

Figure 18 Quartile points of the vertically scaled scores, across levels.

Concurrent Calibration Procedures

Partly because of the issue of linking Level 6 to Level 5 by the TCC methods, I decided to try concurrently calibrating
the same data to investigate how that type of procedure would work. I started by trying a concurrent calibration of the
data from all six levels. As will be seen below, the results from using this procedure were very unsatisfactory, so I tried a
different method: three concurrent calibrations of adjacent level data, followed by linking. This method provided more
satisfactory results.

Concurrent Calibration of All Six Levels

First I tried concurrently calibrating all six levels with those items not administered to simulated test takers in each
level specified as not administered. This procedure, surprisingly to me, did not result in reasonable estimates of the item
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Figure 19 Relationships between vertically scaled expected a posteriori estimates and θ1.

Figure 20 Relationships between vertically scaled expected a posteriori estimates and θ2.

parameters. I tried using both BILOG-MG, as in the previously discussed study and results, and MULTILOG (du Toit,
2003) to do these calibrations; neither produced reasonable results. BILOG-MG yielded a-parameter estimates falling
between .014 and .022 for the 20 anchor items administered at Levels 4 and 5. MULTILOG yielded 17 a-parameter esti-
mates between 5.00 and 13.20, and all 20 b-parameter estimates fell between 16.41 and 32.93 for the 20 anchor items
used to link Level 2 to Level 3. To verify these types of unreasonable estimates, I generated a new dataset with the same
generating parameters, with similar poor results.
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Table 5 Statistical Summary of Parameter Estimates From Concurrent Calibration of Adjacent Levels

Levels Statistic a b c

1 & 2 Mean 1.013 0.094 0.222
SD 0.381 1.256 0.042
Min 0.496 −1.704 0.123
Max 2.006 2.699 0.340

3 & 4 Mean 0.979 0.003 0.223
SD 0.244 1.640 0.041
Min 0.562 −3.795 0.144
Max 1.488 2.812 0.357

5 & 6 Mean 0.903 −0.189 0.225
SD 0.325 1.216 0.045
Min 0.338 −3.328 0.138
Max 1.831 1.724 0.364

Concurrent Calibration of Adjacent Levels

Reasoning that the poor results from concurrent calibration of all six levels could be related to the sparsity of the overall
item response data matrix, I decided to try a different concurrent calibration procedure using less sparse data matrices.
This involved three concurrent calibrating runs involving Levels 1 and 2, Levels 3 and 4, and Levels 5 and 6, respectively.
This procedure is somewhat similar to the “hybrid” method used by Briggs and Weeks (2009). However, their design
involved linking across grades within years and also across test administration years within grades. They used linking
with separate calibrations across grades within years of test administration and concurrent calibration within grades across
administration years. Following these concurrent calibrations, I again used the STUIRT SL method to link the parameters
and EAP estimates from the three calibrations. This exercise resulted in far more satisfactory results than the concurrent
calibration of all six levels. It also seems somewhat better than the original analysis of six independent calibration followed
by five vertical linking steps.

Table 5 displays the means, standard deviations, and minimum and maximum parameter estimates for the three cali-
bration runs. All of these estimates seem perfectly reasonable.

After linking the three sets of calibration results using the SL TCC method in STUIRT, the b-parameter estimates lined
up very well, as shown in Figure 21. Comparing Figures 15 and 21, for the individually calibrated and linked procedure
of the six levels with these results from three concurrent calibrations and TCC linking, the results are fairly similar.

Figure 22 displays the relationships, by level, between the vertically scaled b-parameter estimates from the six separate
calibrations and linking procedure and those from the three concurrent calibrations and linking procedure. As shown
in the figure, these location estimates are very similar for the two procedures. The correlations between the two sets of
estimates range from .93 to .98.

In addition, the differences between the b-parameter estimates for the anchor items all fell between -.61 and .36, as
shown in Figure 23. Comparing Figures 16 and 23, these results appear to be better than those of the method of separate
calibration of each of the six levels, followed by linking.

The results for the EAP estimates from these analyses were equally satisfying. Table 6 shows summary statistics for both
the untransformed and the vertically scaled results. These data are also plotted in Figure 24, which shows a reasonable
progression of the vertically scaled means and variations in the scaled scores. The quartile points are similarly displayed
in Figure 25. As in the individually scaled and linked results in the previous section, these results show less variation in
Levels 5 and 6 than in the lower levels.

An interesting feature of these results is that the curvilinearity displayed in both my analyses with separate calibration
and those of Briggs and Weeks (2009) is not evident in these results.

Finally, Figure 26 is a scatterplot showing the relationships, by level, between the two vertical scaling methods. The
correlations between these proficiency estimates of the simulated test takers across the six levels range from .57 to .71.

Discussion

In this paper, I set out to demonstrate the fact that a unidimensional proficiency scale can exist and item response data can
be vertically scaled with a unidimensional IRT model and TCC linking under certain conditions: when the items and the
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Figure 21 Scaled difficulty estimates based on three concurrent calibrations and Stocking-Lord linking.

Figure 22 Vertically scaled b-parameter estimates for the two different analysis procedures.

test-taking population members, at different levels such as school grade levels, are administered assessment instruments
that depend on multiple dimensions, as, for example, related to different subareas of a subject matter field. Although my
demonstration was limited to a two-dimensional configuration of data and dichotomously scored items, these results can
be inferred to also exist in a higher-dimensional situation and with polytomously scored items.

One very interesting finding is that independently calibrating each level and linking the results produced very similar
scales to the alternative method of concurrently calibrating pairs of adjacent levels and then linking these concurrently
calibrated results. The latter procedure, involving many fewer steps, is attractive. There are fewer steps at which mistakes
could be made, and careful checking of results is necessary to ensure accurately analyzed, and hence interpreted, scales.

Kolen and Brennan (2014) presented some information about separate versus concurrent calibration. In a brief sum-
mary, they pointed out that separate calibration is more time consuming and stated that “concurrent estimation is expected
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Figure 23 Differences between anchor item estimates of b parameters.

Table 6 Statistics of Expected A Posteriori Estimates for Concurrent Adjacent Level Calibration and Scaling

Untransformed expected a posteriori estimates

Level Mean SD Min Max

1 −0.704 0.596 −2.672 1.238
2 0.705 0.611 −1.123 2.924
3 −0.577 0.714 −3.150 2.017
4 0.580 0.693 −1.419 3.088
5 −0.625 0.605 −2.641 1.358
6 0.628 0.698 −1.671 2.706

Vertically scaled expected a posteriori estimates

Level Mean SD Min Max

1 −4.409 0.676 −6.641 −2.206
2 −2.811 0.693 −4.884 −0.293
3 −0.577 0.714 −3.150 2.017
4 0.580 0.693 −1.419 3.088
5 2.364 0.397 1.039 3.667
6 3.187 0.458 1.677 4.552

to produce more stable results because it makes use of all of the available information for parameter estimation” (p. 444).
The results of the current study for the concurrent calibration of the six levels are not in accord with expectation. However,
the results for the analyses in which I concurrently calibrated only the adjacent levels and then linked those results might
be seen to be somewhat in agreement with that expectation. But I would caution that we need more research on the issue
of separate versus concurrent calibration before we can make any definitive conclusions. Kolen and Brennan (2014) also
stated that

with concurrent estimation, violation of the unidimensionality assumption might be quite severe. This assumption
requires that a single ability be measured across all grades, which seems unlikely with achievement tests. Violation
of the unidimensionality assumption might cause problems with concurrent estimation. (p. 444)
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Figure 24 Means and variation for concurrent adjacent level calibration and scaling.

Figure 25 Quartile points for concurrent adjacent level calibration and scaling.

Considering this statement in light of comments cited earlier is interesting. As cited earlier, Patz and Yao (2007, p. 260)
stated, “When calibrating items from multiple test forms for the purpose of measuring students across a range of grade
levels, the IRT assumption of unidimensionality would appear implausible.” The conclusion that I reached from my
demonstration is that this assumption is not necessarily implausible. Also as cited earlier, Kolen and Brennan (2014,
p. 469) stated, “One of the most challenging aspects of applying IRT to vertical scaling is the assumption that the same
unidimensional ability is assessed across grade.” I believe that my demonstration here shows that this assumption may
not always be as challenging as they stated. Also, as I pointed out earlier, my results do not show the decreasing variability
mentioned by Briggs and Weeks (2009), which they pointed out could be associated with violation of the IRT assumption
of unidimensionality. In my opinion, the fact that my demonstration does not show this decreasing variability may well
be related to the fact that, under condition like those of my demonstration, a curvilinear unidimensional scale can exist
and be developed in a multidimensional space.

ETS Research Report No. RR-17-29. © 2017 Educational Testing Service 23



J. E. Carlson Unidimensional Vertical Scaling in Multidimensional Space

Figure 26 Relationships by level of the vertically scaled expected a posteriori estimates by level.

As I have demonstrated in this and my previous research (Carlson, 2001), a unidimensional scale can exist, and be
derived, under the condition that the items on the scale are located on a curved line (or perhaps very close to it; this
has not been investigated in this study) in the multidimensional space and, of course, that the populations of test takers’
proficiencies on the underlying dimensions are closely aligned with that curve. Furthermore, unidimensional scaling and
linking of such data can yield a very reasonable scale that should be interpretable as, for example, growth in an academic
assessment subject matter area in which the focus on instruction in various subareas varies across grade level.

In my view, the results speak for themselves without further discussion. There is one caveat that must, however, be
presented. When measurement professionals are dealing with real educational assessment data across, for example, grade
levels, the item response data cannot be analyzed in a way that will reveal the existence of the type of curvilinear multidi-
mensionality discussed in this report. We can, of course, use MIRT models and factor analysis to study the dimensionality
of most datasets. But, as I have shown previously (Carlson, 2011), relying on the eigenvalue–eigenvector structure of the
data is an unreliable method of inferring dimensionality; that methodology overestimates the number of dimensions.
The other side of this dimensionality coin is, however, that in this study I have demonstrated that it is possible to scale
multilevel data in the presence of multidimensionality of a certain type. Hence, when data from an assessment program
are vertically scaled across grades, if the item response data fit a unidimensional IRT model, we can interpret the data as
having an underlying unidimensional scale. We just do not truly know strictly from IRT analysis results whether or how
the derived scale relates to underlying multiple dimensions. To interpret that scale, psychometricians will have to work
closely with assessment development professionals to come up with reasonable ways in which to interpret the resulting
scales. Such cooperative efforts can bring into play the cognitive theoretic aspects of the subject matter and how students
learn subject matter in a discipline (e.g., school subjects) to explain what differences in performance at different grade
levels on a vertical scale mean. Explaining the meaning of scores and score differences (between test takers with different
scores, across grades within years, or across years within test takers) requires such cooperative efforts of a variety of testing
professionals. One purpose of the demonstration in this report is to encourage such cooperation.
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Appendix

Givens: polar coordinates & a∗ Computed

Item Level admin. ω1 b∗ a∗ b1 b2 d a1 a2

1 One only 17.06 −4.17 0.80 −3.987 −1.223 3.336 0.765 0.235
2 17.14 −4.10 0.80 −3.918 −1.208 3.280 0.764 0.236
3 17.22 −4.07 0.83 −3.888 −1.205 3.378 0.793 0.246
4 17.30 −4.03 0.85 −3.848 −1.198 3.426 0.812 0.253
5 17.43 −4.00 0.87 −3.816 −1.198 3.480 0.830 0.261
6 17.55 −3.96 0.90 −3.776 −1.194 3.564 0.858 0.271
7 17.63 −3.93 0.93 −3.745 −1.190 3.655 0.886 0.282
8 17.70 −3.89 0.95 −3.706 −1.183 3.696 0.905 0.289
9 17.85 −3.86 0.97 −3.674 −1.183 3.744 0.923 0.297
10 18.00 −3.82 1.00 −3.633 −1.180 3.820 0.951 0.309
11 18.10 −3.79 1.03 −3.602 −1.177 3.904 0.979 0.320
12 18.20 −3.75 1.05 −3.562 −1.171 3.938 0.997 0.328
13 18.30 −3.72 1.07 −3.532 −1.168 3.980 1.016 0.336
14 18.40 −3.68 1.10 −3.492 −1.162 4.048 1.044 0.347
15 18.50 −3.64 1.12 −3.452 −1.155 4.077 1.062 0.355
16 18.60 −3.61 1.15 −3.421 −1.151 4.152 1.090 0.367
17 18.73 −3.57 1.17 −3.381 −1.146 4.177 1.108 0.376
18 18.85 −3.54 1.20 −3.350 −1.144 4.248 1.136 0.388
19 18.98 −3.50 1.22 −3.310 −1.138 4.270 1.154 0.397
20 19.10 −3.47 1.25 −3.279 −1.135 4.338 1.181 0.409

21 One & two 19.30 −3.40 1.30 −3.209 −1.124 4.420 1.227 0.430
22 19.55 −3.33 1.35 −3.138 −1.114 4.496 1.272 0.452
23 19.80 −3.26 1.40 −3.067 −1.104 4.564 1.317 0.474
24 20.00 −3.19 1.45 −2.998 −1.091 4.626 1.363 0.496
25 20.35 −3.12 1.50 −2.925 −1.085 4.680 1.406 0.522
26 20.60 −3.05 1.55 −2.855 −1.073 4.728 1.451 0.545
27 21.00 −2.98 1.60 −2.782 −1.068 4.768 1.494 0.573
28 21.30 −2.91 1.65 −2.711 −1.057 4.802 1.537 0.599
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Continued

Givens: polar coordinates & a∗ Computed

Item Level admin. ω1 b∗ a∗ b1 b2 d a1 a2

29 21.55 −2.84 1.70 −2.641 −1.043 4.828 1.581 0.624
30 22.00 −2.77 1.75 −2.568 −1.038 4.848 1.623 0.656
31 22.50 −2.68 0.80 −2.476 −1.026 2.144 0.739 0.306
32 22.90 −2.61 0.85 −2.404 −1.016 2.219 0.783 0.331
33 23.35 −2.54 0.90 −2.332 −1.007 2.286 0.826 0.357
34 23.80 −2.46 0.95 −2.251 −0.993 2.337 0.869 0.383
35 24.30 −2.38 1.00 −2.169 −0.979 2.380 0.911 0.412
36 24.80 −2.30 1.05 −2.088 −0.965 2.415 0.953 0.440
37 25.50 −2.23 1.10 −2.013 −0.960 2.453 0.993 0.474
38 26.20 −2.15 1.15 −1.929 −0.949 2.473 1.032 0.508
39 26.80 −2.07 1.20 −1.848 −0.933 2.484 1.071 0.541
40 27.45 −1.99 1.25 −1.766 −0.917 2.488 1.109 0.576

41 Two & three 28.35 −1.92 1.30 −1.690 −0.912 2.496 1.144 0.617
42 28.65 −1.83 1.35 −1.606 −0.877 2.471 1.185 0.647
43 29.40 −1.76 1.40 −1.533 −0.864 2.464 1.220 0.687
44 30.00 −1.68 1.45 −1.455 −0.840 2.436 1.256 0.725
45 30.80 −1.60 1.50 −1.374 −0.819 2.400 1.288 0.768
46 31.40 −1.52 1.55 −1.297 −0.792 2.356 1.323 0.808
47 31.80 −1.43 1.60 −1.215 −0.754 2.288 1.360 0.843
48 32.00 −1.35 1.65 −1.145 −0.715 2.228 1.399 0.874
49 32.20 −1.27 1.70 −1.075 −0.677 2.159 1.439 0.906
50 32.40 −1.20 1.75 −1.013 −0.643 2.100 1.478 0.938
51 32.50 −1.12 0.80 −0.945 −0.602 0.896 0.675 0.430
52 32.70 −1.04 0.85 −0.875 −0.562 0.884 0.715 0.459
53 32.90 −0.98 0.90 −0.823 −0.532 0.882 0.756 0.489
54 33.10 −0.91 0.95 −0.762 −0.497 0.865 0.796 0.519
55 33.30 −0.84 1.00 −0.702 −0.461 0.840 0.836 0.549
56 33.50 −0.75 1.05 −0.625 −0.414 0.788 0.876 0.580
57 33.70 −0.65 1.10 −0.541 −0.361 0.715 0.915 0.610
58 33.90 −0.55 1.15 −0.457 −0.307 0.633 0.955 0.641
59 33.91 −0.45 1.20 −0.373 −0.251 0.540 0.996 0.669
60 34.00 −0.35 1.25 −0.290 −0.196 0.438 1.036 0.699

61 Three & four 34.50 −0.25 1.30 −0.206 −0.142 0.325 1.071 0.736
62 35.50 −0.16 1.35 −0.130 −0.093 0.216 1.099 0.784
63 36.50 −0.07 1.40 −0.056 −0.042 0.098 1.125 0.833
64 37.50 −0.02 1.45 −0.016 −0.012 0.029 1.150 0.883
65 43.50 0.05 1.50 0.036 0.034 −0.075 1.088 1.033
66 44.00 0.13 1.55 0.094 0.090 −0.202 1.115 1.077
67 44.50 0.21 1.60 0.150 0.147 −0.336 1.141 1.121
68 45.00 0.28 1.65 0.198 0.198 −0.462 1.167 1.167
69 45.70 0.36 1.70 0.251 0.258 −0.612 1.187 1.217
70 46.30 0.43 1.75 0.297 0.311 −0.753 1.209 1.265
71 47.50 0.52 0.80 0.351 0.383 −0.416 0.540 0.590
72 48.50 0.60 0.85 0.398 0.449 −0.510 0.563 0.637
73 49.00 0.68 0.90 0.446 0.513 −0.612 0.590 0.679
74 49.50 0.74 0.95 0.481 0.563 −0.703 0.617 0.722
75 50.00 0.82 1.00 0.527 0.628 −0.820 0.643 0.766
76 50.30 0.88 1.05 0.562 0.677 −0.924 0.671 0.808
77 50.80 0.95 1.10 0.600 0.736 −1.045 0.695 0.852
78 51.30 1.02 1.15 0.638 0.796 −1.173 0.719 0.897
79 51.60 1.08 1.20 0.671 0.846 −1.296 0.745 0.940
80 52.10 1.15 1.25 0.706 0.907 −1.438 0.768 0.986

81 Four & five 51.80 1.21 1.30 0.748 0.951 −1.573 0.804 1.022
82 52.50 1.28 1.35 0.779 1.015 −1.728 0.822 1.071
83 52.80 1.34 1.40 0.810 1.067 −1.876 0.846 1.115
84 53.00 1.39 1.45 0.837 1.110 −2.016 0.873 1.158
85 53.40 1.44 1.50 0.859 1.156 −2.160 0.894 1.204
86 53.70 1.49 1.55 0.882 1.201 −2.310 0.918 1.249
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Givens: polar coordinates & a∗ Computed

Item Level admin. ω1 b∗ a∗ b1 b2 d a1 a2

87 54.00 1.55 1.60 0.911 1.254 −2.480 0.940 1.294
88 54.50 1.61 1.65 0.935 1.311 −2.657 0.958 1.343
89 54.80 1.65 1.70 0.951 1.348 −2.805 0.980 1.389
90 55.00 1.69 1.75 0.969 1.384 −2.958 1.004 1.434
91 55.20 1.74 0.80 0.993 1.429 −1.392 0.457 0.657
92 55.60 1.79 0.85 1.011 1.477 −1.522 0.480 0.701
93 55.90 1.84 0.90 1.032 1.524 −1.656 0.505 0.745
94 56.50 1.90 0.95 1.049 1.584 −1.805 0.524 0.792
95 56.90 1.95 1.00 1.065 1.634 −1.950 0.546 0.838
96 57.70 2.07 1.05 1.106 1.750 −2.174 0.561 0.888
97 57.20 2.01 1.10 1.089 1.690 −2.211 0.596 0.925
98 58.10 2.13 1.15 1.126 1.808 −2.450 0.608 0.976
99 58.60 2.19 1.20 1.141 1.869 −2.628 0.625 1.024
100 59.00 2.24 1.25 1.154 1.920 −2.800 0.644 1.071

101 Five & six 59.60 2.30 1.30 1.164 1.984 −2.990 0.658 1.121
102 60.00 2.36 1.35 1.180 2.044 −3.186 0.675 1.169
103 60.40 2.42 1.40 1.195 2.104 −3.388 0.692 1.217
104 60.90 2.48 1.45 1.206 2.167 −3.596 0.705 1.267
105 61.20 2.53 1.50 1.219 2.217 −3.795 0.723 1.314
106 61.50 2.58 1.55 1.231 2.267 −3.999 0.740 1.362
107 61.90 2.63 1.60 1.239 2.320 −4.208 0.754 1.411
108 62.20 2.68 1.65 1.250 2.371 −4.422 0.770 1.460
109 62.50 2.73 1.70 1.261 2.422 −4.641 0.785 1.508
110 63.00 2.79 1.75 1.267 2.486 −4.883 0.794 1.559
111 63.30 2.84 0.80 1.276 2.537 −2.272 0.359 0.715
112 63.60 2.88 0.85 1.281 2.580 −2.448 0.378 0.761
113 63.80 2.92 0.90 1.289 2.620 −2.628 0.397 0.808
114 64.00 2.95 0.95 1.293 2.651 −2.803 0.416 0.854
115 64.30 3.00 1.00 1.301 2.703 −3.000 0.434 0.901
116 64.40 3.01 1.05 1.301 2.715 −3.161 0.454 0.947
117 64.70 3.06 1.10 1.308 2.766 −3.366 0.470 0.994
118 65.00 3.10 1.15 1.310 2.810 −3.565 0.486 1.042
119 65.20 3.15 1.20 1.321 2.859 −3.780 0.503 1.089
120 65.50 3.18 1.25 1.319 2.894 −3.975 0.518 1.137

121 Six only 66.00 3.26 1.30 1.326 2.978 −4.238 0.529 1.188
122 66.25 3.30 1.32 1.329 3.021 −4.356 0.532 1.208
123 66.50 3.34 1.35 1.332 3.063 −4.509 0.538 1.238
124 66.75 3.38 1.37 1.334 3.106 −4.631 0.541 1.259
125 67.00 3.42 1.40 1.336 3.148 −4.788 0.547 1.289
126 67.25 3.46 1.43 1.338 3.191 −4.948 0.553 1.319
127 67.50 3.51 1.45 1.343 3.243 −5.090 0.555 1.340
128 67.75 3.55 1.48 1.344 3.286 −5.254 0.560 1.370
129 68.00 3.60 1.50 1.349 3.338 −5.400 0.562 1.391
130 68.25 3.65 1.52 1.353 3.390 −5.548 0.563 1.412
131 68.50 3.70 1.55 1.356 3.443 −5.735 0.568 1.442
132 68.75 3.75 1.57 1.359 3.495 −5.888 0.569 1.463
133 69.00 3.80 1.60 1.362 3.548 −6.080 0.573 1.494
134 69.25 3.85 1.62 1.364 3.600 −6.237 0.574 1.515
135 69.50 3.90 1.65 1.366 3.653 −6.435 0.578 1.546
136 69.75 3.95 1.67 1.367 3.706 −6.597 0.578 1.567
137 70.00 4.00 1.70 1.368 3.759 −6.800 0.581 1.597
138 70.25 4.05 1.72 1.369 3.812 −6.966 0.581 1.619
139 70.50 4.10 1.75 1.369 3.865 −7.175 0.584 1.650
140 70.75 4.15 1.77 1.368 3.918 −7.346 0.584 1.671

Mean 43.561 0.140 1.275 −0.462 0.698 −0.430 0.856 0.854
SD 18.521 2.630 0.291 1.845 1.683 3.419 0.298 0.398
Min 17.060 −4.170 0.800 −3.987 −1.223 −7.346 0.359 0.235
Max 70.750 4.150 1.770 1.369 3.918 4.848 1.623 1.671
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